Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.888
Filtrar
1.
J Agric Food Chem ; 72(12): 6651-6659, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501756

RESUMO

Deoxynivalenol (DON) is a secondary metabolite of fungi that is harmful to humans and animals. This study examined the protective effects of natural substances, including resveratrol, quercetin, vitamin E, vitamin C, and microbe-derived antioxidants (MA), on both human gastric mucosal cells (GES-1) and pig small intestinal epithelial cells (IPEC-1) when induced by DON. Cells were incubated with active substances for 3 h and then exposed to DON for 24 h. The oxidative stress index, cell cycle, and apoptosis were measured. As compared to cells treated only with DON, pretreatment with active substances improved the balance of the redox status in cells caused by DON. Specifically, quercetin, vitamin E, vitamin C, and MA showed the potential to alleviate the G2 phase cell cycle arrest effect that was induced by DON in both kinds of cells. It was observed that vitamin E and vitamin C can alleviate DON-induced apoptosis and the G2 phase cycle arrest effect mediated via the ATM-Chk 2-Cdc 25C and ATM-P53 signaling pathways in GES-1 cells. In IPEC-1 cells, vitamin C and MA can alleviate both DON-induced apoptosis and the G2 phase cycle arrest effect via the ATM-Chk 2-Cdc 25C signaling pathway. Different bioactive substances utilize different protective mechanisms against DON in interacting with different cells. The proper addition of vitamin E and vitamin C to food can neutralize the toxic effect of DON, while the addition of vitamin C and MA to animal feed can reduce the harm DON does to animals.


Assuntos
Apoptose , Quercetina , Tricotecenos , Humanos , Animais , Suínos , Quercetina/farmacologia , Linhagem Celular , Antioxidantes/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Ácido Ascórbico/farmacologia , Vitamina E , Dano ao DNA
2.
Phytomedicine ; 127: 155440, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452691

RESUMO

BACKGROUND: The high metastasis and mortality rates of head and neck squamous cell carcinoma (HNSCC) urgently require new treatment targets and drugs. A steroidal component of ChanSu, telocinobufagin (TBG), was verified to have anti-cancer effects in various tumors, but its activity and mechanism in anti-HNSCC were still unknown. PURPOSE: This study tried to demonstrate the anti-tumor effect of TBG on HNSCC and verify its potential mechanism. METHODS: The effect of TBG on cell proliferation and metastasis were performed and the TBG changed genes were detected by RNA-seq analysis in HNSCC cells. The GSEA and PPI analysis were used to identify the pathways targeted for TBG-regulated genes. Meanwhile, the mechanism of TBG on anti-proliferative and anti-metastasis were investigated in vitro and in vivo. RESULTS: The in vitro and in vivo experiments confirmed that TBG has favorable anti-tumor effects by induced G2/M phase arrest and suppressed metastasis in HNSCC cells. Further RNA-seq analysis demonstrated the genes regulated by TBG were enriched at the G2/M checkpoint and PLK1 signaling pathway. Then, the bioinformatic analysis of clinical data found that high expressed PLK1 were closely associated with poor overall survival in HNSCC patients. Furthermore, PLK1 directly and indirectly modulated G2/M phase and metastasis (by regulated CTCF) in HNSCC cells, simultaneously. TBG significantly inhibited the protein levels of PLK1 in both phosphorylated and non-phosphorylated forms and then, in one way, inactivated PLK1 failed to activate G2/M phase-related proteins (including CDK1, CDC25c, and cyclin B1). In another way, be inhibited PLK1 unable promote the nuclear translocation of CTCF and thus suppressed HNSC cell metastasis. In contrast, the anti-proliferative and anti-metastasis effects of TBG on HNSCC cell were vanished when cells high-expressed PLK1. CONCLUSION: The present study verified that PLK1 mediated TBG induced anti-tumor effect by modulated G2/M phase and metastasis in HNSCC cells.


Assuntos
Bufanolídeos , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Linhagem Celular Tumoral
3.
Environ Toxicol ; 39(5): 3264-3273, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38459623

RESUMO

Bisphenol A (BPA) is a substance that can harm the environment and human health by interfering with the normal functioning of the body's hormonal system. It is commonly found in various plastic-based products such as cosmetics, canned foods, beverage containers, and medical equipment and as well as it can also be absorbed by inhalation. There have been limited studies on the effects of BPA on lung fibroblasts, and it is still unclear how high levels of BPA can impact respiratory system cells, particularly the lungs and trachea. In this research, we aimed to investigate the cell cycle disruption potential of BPA on respiratory system cells by examining healthy trachea and lung cells together for the first time. The findings indicated that BPA exposure can alter the healthy cells' morphology, leading to reduced cellular viability that has been assessed by MTT and SRB assays. BPA treatment was able to activate caspase3 as expected, which could cause apoptosis in treated cells. Although the highest dose of BPA did not increase the apoptotic rate of rat trachea cells, it remarkably caused them to become necrotic (52.12%). In addition to quantifying the induction of apoptosis and necrosis by BPA, cell cycle profiles were also determined using flow cytometry. Thereby, BPA treatment unexpectedly inhibited the cell cycle's progression by causing G2/M cell cycle arrest in both lung and tracheal cells, which hindered cell proliferation. The findings of the study suggested that exposure to BPA could lead to serious respiratory problems, even respiratory tract cancers via alterations in the cell cycle.


Assuntos
Apoptose , Compostos Benzidrílicos , Fenóis , Ratos , Animais , Humanos , Morte Celular , Proliferação de Células , Compostos Benzidrílicos/toxicidade , Pontos de Checagem da Fase G2 do Ciclo Celular , Sistema Respiratório
4.
Int J Biol Sci ; 20(5): 1905-1926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481802

RESUMO

Increasing evidence suggests that autophagy plays a major role during renal fibrosis. Transcription factor EB (TFEB) is a critical regulator of autophagy- and lysosome-related gene transcription. However, the pathophysiological roles of TFEB in renal fibrosis and fine-tuned mechanisms by which TFEB regulates fibrosis remain largely unknown. Here, we found that TFEB was downregulated in unilateral ureteral obstruction (UUO)-induced human and mouse fibrotic kidneys, and kidney-specific TFEB overexpression using recombinant AAV serotype 9 (rAAV9)-TFEB in UUO mice alleviated renal fibrosis pathogenesis. Mechanically, we found that TFEB's prevention of extracellular matrix (ECM) deposition depended on autophagic flux integrity and its subsequent blockade of G2/M arrest in tubular cells, rather than the autophagosome synthesis. In addition, we together RNA-seq with CUT&Tag analysis to determine the TFEB targeted gene ATP6V0C, and revealed that TFEB was directly bound to the ATP6V0C promoter only at specific site to promote its expression through CUT&Run-qPCR and luciferase reporter assay. Interestingly, TFEB induced autophagic flux integrity, mainly dependent on scaffold protein ATP6V0C-mediated autophagosome-lysosome fusion by bridging with STX17 and VAMP8 (major SNARE complex) by co-immunoprecipitation analysis, rather than its mediated lysosomal acidification and degradation function. Moreover, we further investigated the underlying mechanism behind the low expression of TEFB in UUO-induced renal fibrosis, and clearly revealed that TFEB suppression in fibrotic kidney was due to DNMT3a-associated TFEB promoter hypermethylation by utilizing methylation specific PCR (MSP) and bisulfite-sequencing PCR (BSP), which could be effectively recovered by 5-Aza-2'-deoxycytidine (5A-za) to alleviate renal fibrosis pathogenesis. These findings reveal for the first time that impaired TFEB-mediated autophagosome-lysosome fusion disorder, tubular cell G2/M arrest and renal fibrosis appear to be sequentially linked in UUO-induced renal fibrosis and suggest that DNMT3a/TFEB/ATP6V0C may serve as potential therapeutic targets to prevent renal fibrosis.


Assuntos
Nefropatias , Obstrução Ureteral , ATPases Vacuolares Próton-Translocadoras , Animais , Humanos , Camundongos , Apoptose , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular Tumoral , Fibrose , Pontos de Checagem da Fase G2 do Ciclo Celular , Nefropatias/metabolismo , Lisossomos/metabolismo , Proteínas SNARE/metabolismo , Proteínas SNARE/farmacologia , Obstrução Ureteral/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/farmacologia
5.
Cells ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391917

RESUMO

Despite substantial advancements in understanding the pathomechanisms of head and neck squamous cell carcinoma (HNSCC), effective therapy remains challenging. The application of kinase inhibitors (KIs) in HNSCC, specifically mTOR and DNA-PK inhibitors, can increase radiosensitivity and therefore presents a promising strategy when used simultaneously with ionizing radiation (IR) in cancer treatment. Our study focused on the selective DNA-PK-inhibitor AZD7648; the selective mTOR-inhibitor Sapanisertib; and CC-115, a dual inhibitor targeting both mTOR and DNA-PK. The impact of these KIs on HNSCC and normal tissue cells was assessed using various analytical methods including cell death studies, cell cycle analysis, real-time microscopy, colony-forming assays and immunohistochemical staining for γH2AX and downstream mTOR protein p-S6. We detected a strong inhibition of IR-induced DNA double-strand break (DSB) repair, particularly in AZD7648-treated HNSCC, whereas normal tissue cells repaired DNA DSB more efficiently. Additionally, AZD7648 + IR treatment showed a synergistic decline in cell proliferation and clonogenicity, along with an elevated G2/M arrest and cell death in the majority of HNSCC cell lines. CC-115 + IR treatment led to an elevation in G2/M arrest, increased cell death, and a synergistic reduction in cell proliferation, though the effect was notably lower compared to the AZD7648 + IR- treated group. Sapanisertib led to a high cellular toxicity in both HNSCC and normal tissue cells, even in non-irradiated cells. Regarding cell proliferation and the induction of apoptosis and necrosis, Sapanisertib + IR was beneficial only in HPV+ HNSCC. Overall, this study highlights the potential of AZD7648 as a radiosensitizing agent in advanced-stage HPV-positive and negative HNSCC, offering a promising therapeutic strategy. However, the dual mTOR/DNA-PK-I CC-115 did not provide a distinct advantage over the use of selective KIs in our investigations, suggesting limited benefits for its application in KI + IR therapy. Notably, the selective mTOR-inhibitor Sapanisertib was only beneficial in HPV+ HNSCC and should not be applied in HPV- cases.


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Radiação Ionizante , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteína Quinase Ativada por DNA/antagonistas & inibidores
6.
Br J Cancer ; 130(8): 1377-1387, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38396173

RESUMO

BACKGROUND/OBJECTIVE: To explore the anti-tumour activity of combining AKT inhibition and docetaxel in PTEN protein null and WT prostate tumours. METHODS: Mechanisms associated with docetaxel capivasertib treatment activity in prostate cancer were examined using a panel of in vivo tumour models and cell lines. RESULTS: Combining docetaxel and capivasertib had increased activity in PTEN null and WT prostate tumour models in vivo. In vitro short-term docetaxel treatment caused cell cycle arrest in the majority of cells. However, a sub-population of docetaxel-persister cells did not undergo G2/M arrest but upregulated phosphorylation of PI3K/AKT pathway effectors GSK3ß, p70S6K, 4E-BP1, but to a lesser extent AKT. In vivo acute docetaxel treatment induced p70S6K and 4E-BP1 phosphorylation. Treating PTEN null and WT docetaxel-persister cells with capivasertib reduced PI3K/AKT pathway activation and cell cycle progression. In vitro and in vivo it reduced proliferation and increased apoptosis or DNA damage though effects were more marked in PTEN null cells. Docetaxel-persister cells were partly reliant on GSK3ß as a GSK3ß inhibitor AZD2858 reversed capivasertib-induced apoptosis and DNA damage. CONCLUSION: Capivasertib can enhance anti-tumour effects of docetaxel by targeting residual docetaxel-persister cells, independent of PTEN status, to induce apoptosis and DNA damage in part through GSK3ß.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Pirimidinas , Pirróis , Masculino , Humanos , Docetaxel/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Transdução de Sinais , Apoptose , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , PTEN Fosfo-Hidrolase/metabolismo
7.
Int J Biol Sci ; 20(3): 1093-1109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322119

RESUMO

Background: As lung cancer is the leading cause of cancer death worldwide, the development of new medicines is a crucial endeavor. Naringenin, a flavanone derivative, possesses anti-cancer and anti-inflammatory properties and has been reported to have cytotoxic effects on various cancer cells. The current study investigated the underlying molecular mechanism by which naringenin induces cell death in lung cancer. Methods: The expression of apoptosis, cell cycle arrest, and autophagy markers in H1299 and A459 lung cancer cells was evaluated using a terminal deoxynucleotidyl transferase dUTP nick end labeling assay (TUNEL), Western blot, Annexin V/PI stain, PI stain, acridine orange staining, and transmission electron microscopy (TEM). Using fluorescence microscopy, DALGreen was used to observe the degradation of p62, a GFP-LC3 plasmid was used to evaluate puncta formation, and a pcDNA3-GFP-LC3-RFP-LC3ΔG plasmid was used to evaluate autophagy flux. Furthermore, the anti-cancer effect of naringenin was evaluated in a subcutaneous H1299 cell xenograft model. Results: Naringenin treatment of lung cancer cells (H1299 and A459) reduced cell viability and induced cell cycle arrest. Pretreatment of cells with ROS scavengers (N-acetylcysteine or catalase) suppressed the naringenin-induced cleavage of apoptotic protein and restored cyclin-dependent kinase activity. Naringenin also triggered autophagy by mediating ROS generation, thereby activating AMP-activated protein kinase (AMPK) signaling. ROS inhibition not only inhibited naringenin-induced autophagic puncta formation but also decreased the ratio of microtubule-associated proteins 1A/1B light chain 3 II (LC3II)/LC3I and activity of the AMPK signaling pathway. Furthermore, naringenin suppressed tumor growth and promoted apoptosis in the xenograft mouse model. Conclusion: This study demonstrated the potent anti-cancer effects of naringenin on lung cancer cells, thereby providing valuable insights for developing small-molecule drugs that can induce cell cycle arrest, apoptosis, and autophagic cell death.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Flavanonas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Apoptose , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Autofagia , Flavanonas/farmacologia
8.
Toxicon ; 240: 107641, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331108

RESUMO

Lung cancer is a significant contributor to cancer morbidity and mortality globally. Arenobufagin, a compound derived from Bufo viridis toad venom, has demonstrated the ability to inhibit cell growth in various cancer cell lines. However, our understanding of the role and mechanism of arenobufagin in lung cancer remains incomplete, necessitating further researches to fully elucidate its action mechanism. In this study, we further explored the impact of arenobufagin on A549 cells. The results revealed that it exerted a potent cytotoxic effect on A549 cells by inhibiting cell colony formation, promoting cell apoptosis, increasing reactive oxygen species (ROS) levels, and arresting A549 cells in G2/M phase. Collectively, our findings suggested that arenobufagin may have potential as a future therapeutic for lung cancer treatment.


Assuntos
Venenos de Anfíbios , Bufanolídeos , Neoplasias Pulmonares , Humanos , Células A549 , Venenos de Anfíbios/farmacologia , Apoptose , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias Pulmonares/tratamento farmacológico , Proliferação de Células , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Pontos de Checagem do Ciclo Celular
9.
Chem Biol Interact ; 391: 110901, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331334

RESUMO

The cell cycle includes two checkpoint arrests allowing to repair of damaged DNA. Many cancer cell lines exhibit weak G1 checkpoint mechanisms relying significantly more on the G2 checkpoint than do healthy cells. Inhibition of Myt1 kinase (PKMYT1), a forgotten member of the Wee family, cyclin-dependent kinase 1 (Cdk1) inhibitory kinase, target for G2 checkpoint abrogation, whose inhibition forces cells into premature unchecked mitosis resulting in cell death, is a promising concept for anticancer therapy. There are not many inhibitors of this emerging, potentially clinically important kinase. Herein, the valuable insight into structural features and binding mechanisms of diaminopyrimidines, aminoquinolines, quinazolines, pyrido[2,3-d]pyrimidines, pyrazolo[3,4-d]pyrimidines, and pyrrolo[2,3-b]quinoxalines, as well as finally made a general scheme of fragmented structures of Myt1 inhibitors with the enzyme, offer potential frameworks useful for future directions, for further chemical optimizations, in the discovery and the design of novel effective structures, potential therapeutics.


Assuntos
Proteínas de Ciclo Celular , Neoplasias , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteína Quinase CDC2/metabolismo , Mitose , Pontos de Checagem da Fase G2 do Ciclo Celular , Pirimidinas/farmacologia , Neoplasias/metabolismo , Fosforilação , Proteínas de Membrana/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
10.
Phytomedicine ; 126: 155267, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368795

RESUMO

BACKGROUND: Inhibition of NF-κB activity represents a strategy to treat acute myeloid leukemia, one of the most lethal leukemia types. Naphthylisoquinolines (NIQs) are cytotoxic alkaloids from lianas of the families Ancistrocladaceae and Dioncophyllaceae, which are indigenous to tropical rainforests. PURPOSE: Uncovering therapeutic possibilities and underlying molecular mechanisms of dioncophylline A and its derivatives towards NF-κB related cellular processes. METHODS: Resazurin-based cell viability assay was performed for dioncophylline A and three derivatives on wild-type CCRF-CEM and multidrug-resistant CEM/ADR5000 cells. Transcriptome analysis was executed to discover cellular functions and molecular networks associated with dioncophylline A treatment. Expression changes obtained by mRNA microarray hybridization were confirmed using qRT-PCR. Molecular docking was applied to predict the affinity of the NIQs with NF-κB. To validate the in silico approach, NF-κB reporter assays were conducted on HEK-Blue™ Null1 cells. Cell death mechanisms and cell cycle arrest were studied using flow cytometry. The potential activity on angiogenesis was evaluated with the endothelial cell tube formation assay on HUVECs using fluorescence microscopy. Intracellular NF-κB location in HEK-Blue™ Null1 cells was visualized with immunofluorescence. Finally, the anti-tumor activity of dioncophylline A was studied by a xenograft zebrafish model in vivo. RESULTS: Our study demonstrated that dioncophylline A and its derivatives exerted potent cytotoxicity on leukemia cells. Using Ingenuity Pathway Analysis, we identified the NF-κB network as the top network, and docking experiments predicted dioncophylline A and two of its derivatives sharing the same binding pocket with the positive control compound, triptolide. Dioncophylline A showed the best inhibitory activity in NF-κB reporter assays compared to its derivatives, caused autophagy rather than apoptosis, and induced G2/M arrest. It also prevented NF-κB translocation from the cytoplasm to the nucleus. Tube formation as an angiogenesis marker was significantly suppressed by dioncophylline A treatment. Finally, the remarkable anti-tumor activity of dioncophylline A was proven in zebrafish in vivo. CONCLUSION: Taken together, we report for the first time the molecular mechanism behind the cytotoxic effect of dioncophylline A on leukemia cells. Dioncophylline A showed strong cytotoxic activity, inhibited NF-κB translocation, significantly affected the NF-κB in silico and in vitro, subdued tube formation, induced autophagy, and exerted antitumor activity in vivo. Our findings enlighten both the cellular functions including the NF-κB signaling pathway and the cytotoxic mechanism affected by dioncophylline A.


Assuntos
Antineoplásicos , Isoquinolinas , Leucemia , Animais , Humanos , NF-kappa B/metabolismo , Peixe-Zebra/metabolismo , Apoptose , Simulação de Acoplamento Molecular , 60489 , Pontos de Checagem da Fase G2 do Ciclo Celular , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular , Autofagia
11.
Analyst ; 149(6): 1872-1884, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38349213

RESUMO

Neuroblastoma and glioblastoma are the most commonly seen nervous system tumors, and their treatment is challenging. Relatively safe and easy acquisition of nutraceutical natural products make them suitable candidates for anticancer research. Royal jelly (RJ), a superfood, has many biological and pharmacological activities. This study was conducted to, for the first time, elucidate its anticancer efficiency, even in high doses, on neuroblastoma and glioblastoma cell lines through cell viability, apoptosis, cell cycle and biomolecular content evaluation. We performed experiments with RJ concentrations in the range of 1.25-10 mg mL-1 for 48 h. Cell viability assays revealed a notable cytotoxic effect of RJ in a concentration-dependent manner. Treatment with a high dose of RJ significantly increased the apoptotic cell population of both cell lines. Furthermore, we observed G0-G1 phase arrest in neuroblastoma cells but G2-M arrest in glioblastoma cells. All these cellular changes are closely associated with the alterations of the macromolecular makeup of the cells, such as decreased saturated lipid, protein, DNA and RNA amounts, protein conformational changes, decreased protein phosphorylation and increased protein carbonylation. These cellular changes are associated with RJ triggered-ROS formation. The clear segregation between the control and the RJ-treated groups proved these changes, obtained from the unsupervised and supervised chemometric analysis. RJ has good anticancer activity against nervous system cancers and could be safely used with current treatment strategies.


Assuntos
Glioblastoma , Neuroblastoma , Humanos , Apoptose , Glioblastoma/tratamento farmacológico , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Ácidos Graxos/farmacologia , Proliferação de Células , Neuroblastoma/tratamento farmacológico
12.
J Biochem Mol Toxicol ; 38(3): e23662, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372072

RESUMO

Bisphenol A (BPA), an exogenous endocrine-disrupting chemical, is widely used to produce polycarbonate plastics. The widely used BPA has been detected in human urine samples, raising public anxiety about the detrimental effects of BPA on the bladder. In this study, we explored regulatory mechanisms for the adverse effects of BPA in human bladder BdFC and T24 cells. BPA induced extrinsic and intrinsic apoptosis and G2/M cell cycle arrest caused by the ATM-CHK1/CHK2-CDC25c-CDC2 signaling, which ultimately inhibited the growth of human bladder cells. We also found that BPA decreased the binding activity of AP-1 and NF-κB transcription factors in human bladder cells, which inhibited migration and invasion through matrix metallopeptidase-2 and -9 inactivation. Phosphorylation of MAPKs was implicated with BPA-mediated detrimental effects in human bladder cells. Collectively, our results provide a novel explanation for the underlying molecular mechanisms that BPA induces cytotoxicity in human bladder cells.


Assuntos
Compostos Benzidrílicos , Fenóis , Fatores de Transcrição , Bexiga Urinária , Humanos , Fosforilação , Apoptose , Pontos de Checagem da Fase G2 do Ciclo Celular , Linhagem Celular Tumoral , Ciclo Celular
13.
J Cancer Res Clin Oncol ; 150(1): 13, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231277

RESUMO

PURPOSE: WEE1 is a crucial kinase involved in the regulation of G2/M checkpoint within the cell cycle. This article aims to comprehensively review the existing knowledge on the implication of WEE1 as a therapeutic target in tumor progression and drug resistance. Furthermore, we summarize the current predictive biomarkers employed to treat cancer with WEE1 inhibitors. METHODS: A systematic review of the literature was conducted to analyze the association between WEE1 inhibition and cancer progression, including tumor advancement and drug resistance. Special attention was paid to the identification and utilization of predictive biomarkers related to therapeutic response to WEE1 inhibitors. RESULTS: The review highlights the intricate involvement of WEE1 in tumor progression and drug resistance. It synthesizes the current knowledge on predictive biomarkers employed in WEE1 inhibitor treatments, offering insights into their prognostic significance. Notably, the article elucidates the potential for precision medicine by understanding these biomarkers in the context of tumor treatment outcomes. CONCLUSION: WEE1 plays a pivotal role in tumor progression and is a promising therapeutic target. Distinguishing patients that would benefit from WEE1 inhibition will be a major direction of future research.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Biomarcadores , Proteínas de Ciclo Celular , Divisão Celular , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias/tratamento farmacológico , Proteínas Tirosina Quinases
14.
Chin Med J (Engl) ; 137(2): 222-231, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38167245

RESUMO

BACKGROUND: Radiation (IR)-induced DNA damage triggers cell cycle arrest and has a suppressive effect on the tumor microenvironment (TME). Wee1, a cell cycle regulator, can eliminate G2/M arrest by phosphorylating cyclin-dependent kinase 1 (CDK1). Meanwhile, programed death-1/programed death ligand-1 (PD-1/PDL-1) blockade is closely related to TME. This study aims to investigate the effects and mechanisms of Wee1 inhibitor AZD1775 and anti-PD-1 antibody (anti-PD-1 Ab) on radiosensitization of hepatoma. METHODS: The anti-tumor activity of AZD1775 and IR was determined by 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide (MTT) assay on human and mouse hepatoma cells HepG2, Hepa1-6, and H22. The anti-hepatoma mechanism of AZD1775 and IR revealed by flow cytometry and Western blot in vitro . A hepatoma subcutaneous xenograft mice model was constructed on Balb/c mice, which were divided into control group, IR group, AZD1775 group, IR + AZD1775 group, IR + anti-PD-1 Ab group, and the IR + AZD1775 + anti-PD-1 Ab group. Cytotoxic CD8 + T cells in TME were analyzed by flow cytometry. RESULTS: Combining IR with AZD1775 synergistically reduced the viability of hepatoma cells in vitro . AZD1775 exhibited antitumor effects by decreasing CDK1 phosphorylation to reverse the IR-induced G2/M arrest and increasing IR-induced DNA damage. AZD1775 treatment also reduced the proportion of PD-1 + /CD8 + T cells in the spleen of hepatoma subcutaneous xenograft mice. Further studies revealed that AZD1775 and anti-PD-1 Ab could enhance the radiosensitivity of hepatoma by enhancing the levels of interferon γ (IFNγ) + or Ki67 + CD8 T cells and decreasing the levels of CD8 + Tregs cells in the tumor and spleen of the hepatoma mice model, indicating that the improvement of TME was manifested by increasing the cytotoxic factor IFNγ expression, enhancing CD8 + T cells proliferation, and weakening CD8 + T cells depletion. CONCLUSIONS: This work suggests that AZD1775 and anti-PD-1 Ab synergistically sensitize hepatoma to radiotherapy by enhancing IR-induced DNA damage and improving cytotoxic CD8 + T cells in TME.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Pirazóis , Pirimidinonas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/radioterapia , Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Quinases/genética , Apoptose , Receptor de Morte Celular Programada 1 , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/radioterapia , Microambiente Tumoral
15.
Chem Biodivers ; 21(3): e202301645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38235946

RESUMO

This study examines the potential of herniarin from tarragon, as an agent with multifaceted effects on bladder cancer cells and investigates herniarin's impact on cell viability, migration, cell cycle regulation, apoptosis induction, and Erk signaling pathways in bladder cancer cell lines, including RT-112 (grade 1, non-invasive), HTB9 (grade 2, invasive), and HT1376 (grade 3, invasive), through comprehensive in vitro experiments. The compound causes cell cycle arrest at distinct phases in different cell lines: G1/S arrest in RT112 cells, G2/M arrest in HTB9 cells, and S phase arrest in HT1376 cells. Furthermore, herniarin induces caspase-mediated apoptosis in various cell lines and simultaneously modulates protein levels of apoptotic and anti-apoptotic proteins, indicating its potential as a therapeutic agent. Herniarin's influence also extends to Erk signaling, a crucial pathway that regulates cell growth and differentiation. In conclusion, this study reveals herniarin's potential as a versatile agent in the treatment of bladder cancer.


Assuntos
Apoptose , Umbeliferonas , Neoplasias da Bexiga Urinária , Humanos , Sobrevivência Celular , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Ciclo Celular , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Proliferação de Células , Pontos de Checagem do Ciclo Celular
16.
J Exp Clin Cancer Res ; 43(1): 18, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38200580

RESUMO

BACKGROUND: Medulloblastoma (MB) patients with MYC oncogene amplification or overexpression exhibit extremely poor prognoses and therapy resistance. However, MYC itself has been one of the most challenging targets for cancer treatment. Here, we identify a novel marinopyrrole natural derivative, MP1, that shows desirable anti-MYC and anti-cancer activities in MB. METHODS: In this study, using MYC-amplified (Group 3) and non-MYC amplified MB cell lines in vitro and in vivo, we evaluated anti-cancer efficacies and molecular mechanism(s) of MP1. RESULTS: MP1 significantly suppressed MB cell growth and sphere counts and induced G2 cell cycle arrest and apoptosis in a MYC-dependent manner. Mechanistically, MP1 strongly downregulated the expression of MYC protein. Our results with RNA-seq revealed that MP1 significantly modulated global gene expression and inhibited MYC-associated transcriptional targets including translation/mTOR targets. In addition, MP1 inhibited MYC-target metabolism, leading to declined energy levels. The combination of MP1 with an FDA-approved mTOR inhibitor temsirolimus synergistically inhibited MB cell growth/survival by downregulating the expression of MYC and mTOR signaling components. Our results further showed that as single agents, both MP1 and temsirolimus, were able to significantly inhibit tumor growth and MYC expression in subcutaneously or orthotopically MYC-amplified MB bearing mice. In combination, there were further anti-MB effects on the tumor growth and MYC expression in mice. CONCLUSION: These preclinical findings highlight the promise of marinopyrrole MP1 as a novel MYC inhibition approach for MYC-amplified MB.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Sirolimo/análogos & derivados , Humanos , Animais , Camundongos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Serina-Treonina Quinases TOR
17.
BMC Complement Med Ther ; 24(1): 28, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195460

RESUMO

BACKGROUND: Indigofera suffruticosa Mill. is used as a folk medicine for treating patients with leukemia, however very little is known regarding the molecular mechanism of its anti-leukemic activity and the chemical profile of the active extract. The present study aimed to reveal the molecular effect of I. suffruticosa aerial parts extract (ISAE) on leukemia cells and its chemical constituents. METHODS: Cytotoxicity of ISAE were determined by resazurin viability assay, multitox - Glo multiplex cytotoxicity assay, and Annexin V staining assay. Cell cycle profiles were revealed by propidium iodide staining assay. The effects of ISAE on G2/M arrest signaling and DNA damage were evaluated by Western blot assay and phospho-H2A.X staining assay. The chemical profile of ISAE were determined by tandem mass spectroscopy and molecular networking approach. RESULTS: We showed that the acute lymphoblastic leukemia cell line Jurkat cell was more responsive to ISAE treatment than other leukemia cell lines. In contrast, ISAE did not induce cytotoxic effects in normal fibroblast cells. Cell cycle analysis revealed that ISAE triggered G2/M arrest in Jurkat cells in dose- and time-dependent manners. Elevation of annexin V-stained cells and caspase 3/7 activity suggested ISAE-induced apoptosis. Furthermore, ISAE alone could increase the phosphorylation of CDK1 at Y15 and activate the ATR/CHK1/Wee1/CDC25C signaling pathway. However, the addition of caffeine, a widely used ATR inhibitor to ISAE, reduced the phosphorylation of ATR, CHK1, and CDK1, as well as G2/M arrest in Jurkat cells. Moreover, increased phospho-H2A.X stained cells indicated the involvement of DNA damage in the anti-leukemic effect of ISAE. Finally, qualitative analysis using UPLC-tandem mass spectroscopy and molecular networking revealed that tryptanthrin was the most abundant organoheterocyclic metabolite in ISAE. At equivalent concentrations to ISAE, tryptanthrin induced G2/M arrest of Jurkat cells, which can be prevented by caffeine. CONCLUSIONS: ISAE causes G2/M arrest via activating ATR/CHK1/CDK1 pathway and tryptanthrin is one of the active components of ISAE. Our findings provide subtle support to the traditional use of I. suffruitcosa in leukemia management in folk medicine.


Assuntos
Indigofera , Leucemia , Humanos , Células Jurkat , Anexina A5 , Apoptose , Cafeína , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Componentes Aéreos da Planta , Extratos Vegetais/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia
18.
Aging (Albany NY) ; 16(1): 348-366, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38189879

RESUMO

Small Nuclear Ribonucleoprotein Polypeptides B and B1 (SNRPB) have been linked to multiple human cancers. However, the mechanism of SNRPB in hepatocellular carcinoma (HCC) and whether SNRPB has a synergistic effect with sorafenib in the treatment of HCC remain unclear. In this study, bioinformatic analysis found that SNRPB was an independent prognostic factor for HCC that exerted a critical effect on the progression of HCC. SNRPB was linked with immune checkpoints, cell cycle, oxidative stress and ferroptosis in HCC. Single cell sequencing analysis found that HCC cell subset with high expression of SNRPB, accounted for a higher proportion in HCC cells with higher stages, had higher expression levels of the genes which promote cell cycle, inhibit oxidative stress and ferroptosis, and had higher cell cycle score, lower oxidative stress score and ferroptosis score. Single-sample gene set enrichment analysis (ssGSEA) analysis found that 17 oxidative stress pathways and 68 oxidative stress-ferroptosis related genes were significantly correlated with SNRPB risk scores. SNRPB knockdown induced cell cycle G2/M arrest and restrained cell proliferation, while downregulated the expression of CDK1, CDK4, and CyclinB1. The combined treatment (SNRPB knockdown+sorafenib) significantly inhibited tumor growth. In addition, the expression of SLC7A11, which is closely-related to ferroptosis, decreased significantly in vitro and in vivo. Therefore, SNRPB may promote HCC progression by regulating immune checkpoints, cell cycle, oxidative stress and ferroptosis, while its downregulation inhibits cell proliferation, which enhances the therapeutic effect of sorafenib, providing a novel basis for the development of HCC therapies.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Neoplasias Retais , Humanos , Carcinoma Hepatocelular/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Apoptose , Ferroptose/genética , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias Hepáticas/genética , Proteínas Centrais de snRNP
19.
Cell Death Dis ; 15(1): 74, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242874

RESUMO

Copy number variations (CNVs) play a vital role in regulating genes expression and tumorigenesis. We explored the copy number alterations in early-stage lung adenocarcinoma using high-throughput sequencing and nucleic acid flight mass spectrometry technology, and found that 8q22.1-22.2 is frequently amplified in lung adenocarcinoma tissues. COX6C localizes on the region and its expression is notably enhanced that driven by amplification in lung adenocarcinoma. Knockdown of COX6C significantly inhibits the cell proliferation, and induces S-G2/M cell cycle arrest, mitosis deficiency and apoptosis. Moreover, COX6C depletion causes a deficiency in mitochondrial fusion, and impairment of oxidative phosphorylation. Mechanistically, COX6C-induced mitochondrial deficiency stimulates ROS accumulation and activates AMPK pathway, then leading to abnormality in spindle formation and chromosome segregation, activating spindle assemble checkpoint, causing mitotic arrest, and ultimately inducing cell apoptosis. Collectively, we suggested that copy amplification-mediated COX6C upregulation might serves as a prospective biomarker for prognosis and targeting therapy in patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Proliferação de Células , Complexo IV da Cadeia de Transporte de Elétrons , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Variações do Número de Cópias de DNA/genética , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias Pulmonares/patologia , Mitose/genética , Espécies Reativas de Oxigênio/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo
20.
Phytomedicine ; 123: 155198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006806

RESUMO

BACKGROUND AND PURPOSE: Epiberberine (EPI) is one of the most important bioalkaloid found in the rhizome of Coptis chinensis, which has been observed to exhibit pharmaceutical effects against gastric cancer (GC). Nevertheless, the potential mechanism of EPI against GC cells still remains unclear. This study aimed to identify the core receptor on GC cells through which EPI inhibited the growth of GC cells and to explore the underlying inhibitory mechanisms. METHODS: To identify hub receptor targets that respond to EPI treatment, RNA sequencing (RNA-Seq) data from a tumor-bearing mouse model were analyzed using bioinformatics method and molecular docking. The binding interaction between EPI and GABRB3 was validated through western blotting based-cellular thermal shift assay (WB-CETSA). To further verify the binding region between EPI and GABRB3 through circular dichroism (CD) chromatography, fragments of the extracellular and transmembrane domains of the GABRB3 protein were expressed and purified in vitro. Stable cell lines with the overexpression or knockdown of GABRB3 were established using the recombinant lentivirus system. MTT ((3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)) assay, colony formation assay, invasion and migration experiments, and flow cytometry were conducted to validate the inhibitory effect of EPI on the GC cells via GABRB3. Additionally, western blotting was utilized to explore the potential inhibitory mechanisms. RESULTS: Through the combination of multiple bioinformatics methods and molecular docking, we found that the γ-aminobutyric acid type A receptor subunit -ß3 (GABRB3) might be the critical receptor target in response to EPI treatment. The results of WB-CETSA analysis indicated that EPI significantly promoted the thermostability of the GABRB3 protein. Importantly, EPI could directly bind to GABRB3 and alter the secondary structure of GABRB3 fragments similar to the natural agonist, γ-aminobutyric acid (GABA). The EPI-induced suppression of the malignant phenotype of GC cells was dependent on the presence of GABRB3. GABRB3 expression was positively correlated with TP53 in patients with GC. The binding of EPI to GABRB3 stimulated p53 accumulation in GC cells. This activated the p21/CDK1/cyclinB1 pathway, resulting in G2/M cell cycle arrest, and induced the Bcl-2/BAX/Caspase axis-dependent cell apoptosis. CONCLUSION: This study revealed the target receptor for EPI in GC cells and provided new insights into its anticancer mechanisms.


Assuntos
Berberina/análogos & derivados , Neoplasias Gástricas , Humanos , Camundongos , Animais , Neoplasias Gástricas/genética , Proliferação de Células , Linhagem Celular Tumoral , Receptores de GABA/metabolismo , Proteína Supressora de Tumor p53 , Simulação de Acoplamento Molecular , Pontos de Checagem da Fase G2 do Ciclo Celular , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...